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1. Introduction

Recently, there has been much interest in the effects of laser

radiation in solids.' Using experimental electronic band struc-

tures and time dependent perturbation theory, researchers have

calculated the photon absorption rate for the electronic states

in a variety of semiconductors. Much effort has also been devoted

to the study of the effects of laser radiation on the phonons in

solid surfaces. 2 However, the effect of a surface on photon-excited

electrons has not been examined.

Studies3 of the effects of synchrotron radiation on metal sur-

faces have shown that photon-stimulated desorption can occur through

electronic excitation. The details4 of this desorption process are

involved, but the ultimate reason for the desorption is the shift

of electronic charge and the resultant Coulombic repulsion.

For a semiconductor, the bulk electronic band structure con-

sists of a number of valence and conduction bands. In addition

to these bulk bands, a surface can introduce additional bands and

local states. 5  These surface bands correspond to a charge density

localized in the surface region. Consequently, by using a laser

to excite electrons to or from the surface band, we can effectively

control the surface charge and, ultimately, the Coulombic repulsion

or attraction of the surface for adsorbed species.

In the following section we will examine the effects of a

surface on the band structure of a model system. Laser excitation

of valence electrons to surface states in this model system will

then be analyzed in the next two sections. Finally, a discussion
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of the applications and limitations of this model for studying

laser induced surface processes will be presented.

2. Model Band Structure

In an infinite crystalline solid, the energies of the elec-

trons divide into bands of allowed states separated by energy

gaps. For a finite crystal thin film calculations6 have demon-

strated that energy states exist in these gaps. Furthermore,

the charge associated with these states resides mostly in the

surface region.

Heine 7 and, later, Lundqvist5 have shown that truncating

a linear chain produces similar effects on the energy gap. For

this simple one-dimensional model, the dispersion relationship

is given in Figure 1. In a semiconductor, the lower inverted-U

curve would be the bulk valence band and the upper U-shaped curve

would be the bulk conduction band. The curve in complex crystal

momentum space is associated with the surface states. If we have

a chain with lattice constant a parallel to the z axis in the

region z'< a/2, the interior wave function associated with these

gap states is that of a damped oscillator:

)(z) = Cse - z cos(2  + p) (1)

with corresponding energy

E(K) - (2- 2 K(V2 _g2 2)1/2  (2)

where C is the normalization constant; K is the imaginary part

of the crystal momentum and ranges from 0 at the edges of the

-- ---
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gap to -IV /gI near the center; g is the reciprocal lattice

constant and equals 2n/a; and V is the g component of the Fourierg

transform of the effective potential. The phase factor 4 is given

by

sin 24 = V. (3)
g

The interior bulk states would have the form

ikz E(k)-k i(k-g)z
V(z)=C[e + e ] (4)

g

with corresponding energy

E(k) = 1k 2 (k-g)2 + (k 2  22 + 2)1/2 (5)

-(k-g) + 41V

The interior solution for both the surface states, equation (1),

and the bulk states, equation (4), should be matched to the

exterior solution of the form

*(z) = C e-qz (6)

with

q = Vo -E(K) ,(7)

where Vo is the work function plus the energy at the top of the

valence band. For bulk states, C in equation (6) and E(K) ins

equation (7) should be replaced by C and E(k), respectively.

To obtain the normalization constants, we assume the chain

to be of length L=Na and the charge density was symmetric about

the center. Under these conditions we obtain

C {[l + (E(k)k L + q (8)v )
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for the bulk states and

= e-a{2Kcos 20-gsin 2 [1 +eKL (1)N-I1

Cs =[e (2K)2 + g2

[e L-l] + e-qa -

+ 2K -q 2(92 q

for the surface states.

In the following sections, we wish to examine laser excita-

tion from the bulk valence band, equation (4), to the surface

band, equation (1). The initial conditions are assumed to be a

filled valence band, but empty surface and conduction bands.

Since equation (4) represents electrons delocalized throughout

the chain and equation (1) corresponds to electrons in the sur-

face region, the excitation of electrons to the surface states

will increase the surface charge.

3. Selection Rule

To determine the transition rate, we must evaluate an in-

tegral of the form

M* «Ap k>,<)I- (10)

where A is the vector potential of the laser radiation and p

is the momentum operator of the electron. Under the dipole

approximation and assuming the laser is polarized parallel to

the chain, M becomes

2wI 1/2 iwt 
(1

M -- L I ) e- <K" dk>, (11)

where I is the laser intensity and w is the angular frequency.

~~ i
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The wave functions of interest, equations (1) and (4), can

be written in the form

-ikz
*k(Z) = e uk(Z) (12)

- i(%)zKz

K (z) = e 2 e UK (z), (13)

where the functions Uk(Z) and uK(z) have the periodicity of the

lattice. The integral in equation (8) now becomes

<KI !Ljk> = 2fdz e 2 e [u (Z)Uk(Z)-iku (z)
azSL K kK zuk(z)]2 2

- E -2iz e 2 e [u K )UkjZ) (14)
L=o -a e-i )k

0 (1+2Z)

where we "have assumed that for large L the contribution of the

exponential tail, equation (6), to the integral will be negligible.

If we change the variable of integration to z' = z + la and exploit

the periodicity of uk(z) and u (z), we obtain
K

N-1l ik a a/2 "(k-i) e K z
4= E e 2 )a eK afdzle-i ~z' ez'u (z')uj()

1=0 a

-ikuK (z')uk(z')]

N-1 i(k _) ta Kt a dE e e Te<k ) I T-k O ,  (15)

where the subscript "o" indicates integration over the first unit

cell. The transition probability is related to the square of
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equation (15):

M2  N-1 N-1 i (k-) (-m)a K(2+m)a d(
= Z- E. e e <Kj k> .(16)

m=0 =0 o

If we change the range of summation, the sums in front of the

integral become

N-i N-I
2 2 K) K(Z+m)a

~e Na E ei(k - (£-m) e (17)
N-i N-i

2 2

Changing the summation variable to s = £ + m and d = Z-m, we get

N-I1 2 N-l-d
KNa i (k-i)da NsaS=e Z e 2 d e (18)

d=l-N s=l-N+d

where the prime signifies a count with an increment of 2. If

N is very large, the sum over s will only be significantly

affected by large values of d. Therefore, for large N, we can

approximate this function by

N-i _i(k-) da (N) s a

S eFNa e .2 e (19)
d=- (N-I) s=-(N-1)

Taking the limit as N goes to infinity, the function takes the

form

S z 2-f6k-2) 1= (20)
a 2 1 -e2a

where 6(k-3-) is the Dirac delta function. Equation (16) can
2

now be written

M42 _ 2n 6 (k-%) 2 (21)
a1 2Ka

Consequently, the transition from a bulk to a surface state is
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only permitted if the real part of the crystal momentum remains

unchanged. This relationship is not too surprising since it is

an exact restriction on laser-induced transitions between bulk

bands.8  Furthermore, for our model, it confines us to the top

of the valence band, where the density of states is a maximum

(infinite) and the laser frequency needed for a transition is

a minimum.

4. Transitions

To first order, the transition rate from a valence band to

a surface band is

T = 2  (rfdkfdK I<KIA-plk> 6(E(K) -E(k) -w). (22)

Using equations (11) and (21), this can be simplified to
V

8w
T ( 1 2ica (E(K)-E(k)-,). (23)V W 0 1-e

q

After evaluating the integral over K, the expression reduces to
d 2

T 8 T (I g2L)« 2 01 1 dK 1(4T = W2- 1 ( 2Ka dE(K) (24)

g

where K in equation (24) refers to the state obeying the resonant

condition:

g= V - K2 + (V2 _ g 2 K2 ) 1 / 2 . (25)

We now define the absorption cross-section, 0:

WTa I (26)



9

Using equations (1), (4), (8) and (9) in equation (24) and tak-

ing the limit as L goes to infinity, the cross-section becomes

(_ 6 1)eKa K sin e+ gcos 2 dK
137'(-- V T2 l+eKa)( 2 +g 2  dE-(K(oY = KK+ (27)

2K cos2- gsin 20 1
(2K) + g_2 2K

With equation (2), we can also readily evaluate the derivative:

dK V g_______K _ (28)
dE(K) K/V 2 q2

dE 1 2V7-g K

Equations (27) and (28) constitute the cross-section for electronic

transitions from the valence band to the surface band. Although

this cross-section is quite complicated, we can readily deduce

its behavior by analyzing the expressions at various limits.

If the exciting laser radiation is at the frequency near

11Eg ahere K = -IV /gj, equation (28) will vanish, and thus

O =i = 0. (29)
2-g

This is exactly what one would expect since this mid-gap energy

is a branch point at which no surface states exist.

If the laser radiation is near a frequency of 0 or Eg, the

cross-section becomes

= ag2 E +g 2 21 (30)g E -g

and
O.Eg (7)( ag 4 )

Cw-.E 9 (r7E([E9g2 (31)SEg [Eg+g 2
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At both extremes, K- 0 and equatiLons (30) and (31) diverge.

This occurs because at the surface band edges the charge

associated with the surface states becomes more and more de-

localized throughout the lattice until at K= 0, the charge

is completely delocalized. At this point the surface states

become bulk states, and instead of cross-sections, one should

consider absorption coefficients.

Figure 2 illustrates the behavior of the cross-section

9
over the entire frequency range. The values for the lattice

constant, a, and the energy gap, Eqi were taken to be those

of silicon.

5. Discussion

As pointed out in the Introduction, we are interested in

using a laser to increase the surface charge density. Since

the effective charge depth is jl/(2cz)j (see equation (1)), we

wish to excite states for large values Of K. For silicon at

maximum K, the surface charge depth is 1.39 lattice constants

(1.39 a); consequently, the charge is confined to a region

very near the surface. As we move away from this mid-gap

region the charge depth increases as mentioned in the last

section. Therefore we are mostly interested in laser frequen-

cies near ; Eg As seen in figure 2, the cross-section is

quite substantial near the mid-gap region and, subsequently,

we could readily increase the surface charge by using a laser

of moderate intensity. Even at w= .15 E 9and w= .85 E gwhere
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the cross-section has increased substantially, the charge depth

is still only about 2 lattice constants. Consequently, we would

1expect a laser tuned to a frequency around :"E gto be an effective

controller of surface charge. Furthermore, since the energy

gaps for most semiconductors are approximately 1 eV (for silicon,

E 9= 1.17 eV), the frequency of interest will be in the infra-

red region.

Since these results are based on a one-dimensional model,

certain limitations should be pointed out. First of all, most

common semiconductors have indirect band-gaps (the minimum in

the conduction band is not over the maximum in the valence band).

To excite states in these gaps would require phonon excitation in

addition to electronic excitation. Furthermore, the form of the

wave function in the indirect gap is not readily obtainable from

a simple model.

Secondly, the various possible planes of a three-dimensional

surface can lead to surface states between some bulk bands and

not others. The surface charge will also be delocalized over the

surface plane, in contrast to only on the other end atoms of a

linear chain.

Finally, the effect of such phenomenon as surface relaxa-

tion and reconstruction are not included in our one-dimensional

model. Surface states can also be modified by the presence of

faults and adspecies.

Some of these problems, including effects of higher dimen-

sions and the existence of adspecies, are the subject of con-

tinuing research. Dynamical processes such as laser-stimulated
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desorption and adsorption are under consideration.
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Figure 1. Dispersion relationship in complex crystal momentum

space (k+ iK) for a finite linear chain. The valence, surface

and conduction bands are labeled V, S and C, respectively.

Figure 2. Absorption cross-section for surface states, a, in

A2 versus the frequency of the exciting laser radiation.
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